
Eastman Software
Imaging

Professional Developer’s Guide
Update

 August, 1999

Eastman Software, Inc., 296 Concord Road ■ Billerica, MA 01821-4130
Tel. (978) 313-7000 ■ http://www.kodak.com and www.eastmansoftware.com

Copyright © Kodak, 1997-1999

Developer’s Guide Update

5

Introduction
This document contains corrections and new information for the
Eastman Software Imaging Professional Developer’s Guide, part
number 715-B017. The information is presented sequentially to
correspond to the chapters in the book.

Chapter 3 — Automation Lexicon

Page 80 Remarks section
In the last sentence, the phrase “value is from 64 to 16384” should
read “value is from 64 to 16392.”

Page 87 PageRange Object Methods
Several entries in the Parameter, Data Type, and Description table
are incorrect.

■ The description for the StartPage parameter should read “First
page in the range.”

■ The NumPages parameter should be changed to EndPage, and
the description for the parameter should read “Last page in the
range.”

The corrected table is shown below.

Parameter Data Type Description

StartPage Long First page in the range.

EndPage Long Last page in the range.

Developer’s Guide Update

6

Chapter 6 — Image-Enabling Web Pages
Page 246 Windows Explorer

Add the following note to this section:

To access the 1.x (NT) document manager from a Web browser,
use the following syntax:

Image://server\database\cabinet\drawer\folder\document

Chapter 7 — Image Edit/Image Annotation Control
Page 322 ImageModified Property

In the Remarks section, the list of methods that set the
ImageModified property to True should include the
LoadAnnotations method.

Page 433 PrintImage Method
An entry in the Parameter, Data Type, and Setting table is
incorrect. The data type for the OutputFormat parameter should
be “Long (enumerated)”, not “Integer (enumerated).”

Page 521 SelectionRectDrawn Event
In the Description section, the phrase “This event occurs
immediately after the end user presses the left mouse button ...” is
incorrect. It should read, “This event occurs immediately after the
end user releases the mouse button after drawing a selection
rectangle ...”

Developer’s Guide Update

7

Chapter 8 — Image Admin Control
Page 552 CancelError Example - VC++

The following sample code replaces the example in the book.

void CAdmin1Dlg::OnPrint()

{

// This will use the ShowPrintDialog method to allow
// the user to specify parameters for printing. This
// example will print the image that is displayed in
// ImgEdit control.

 // Display an image

 ImgEdit1.SetImage ("D:\\image2\\4page.tif");

 ImgEdit1.Display();

// Reset NumCopies in case user printed multiple copies
// last time.

 ImgAdmin1.SetPrintNumCopies (1);

// If CancelError is true, an error is generated if user
// presses Cancel. Trap the error to avoid trying to
// print the file.

 ImgAdmin1.SetCancelError (TRUE);

// Set filename to be printed to the displayed file.
// If this property is not set the dialog box will
// not display.

 ImgAdmin1.SetImage (ImgEdit1.GetImage());

 VARIANT vhWnd; V_VT(&vhWnd) = VT_I4;

V_I4(&vhWnd) = (long)m_hWnd;

// Use try and catch around ShowPrintDialog method to
//catch Cancel error.

// If Cancel is pressed (or another error occurs), catch
// will capture the error exception.

try

{

ImgAdmin1.ShowPrintDialog (vhWnd);

Developer’s Guide Update

8

// Print the image using the parameters obtained from
// the print dialog box (ex. start page, end page etc.).

VARIANT vStart, vEnd, vOutputFormat, vAnnotations, evt;

evt.vt = VT_ERROR;// set to error for optional parameter

V_I4(&vStart) = ImgAdmin1.GetPrintStartPage();

V_I4(&vEnd) = ImgAdmin1.GetPrintEndPage();

V_I4(&vOutputFormat) =
ImgAdmin1.GetPrintOutputFormat();

V_I4(&vAnnotations) = ImgAdmin1.GetPrintAnnotations();

ImgEdit1.PrintImage (vStart, vEnd, vOutputFormat ,
vAnnotations, evt, evt, evt);

 }

catch(COleDispatchException* e)

{

// Handle error in Print Dialog or in actual printing of
// the image

CString CStrErr;

CStrErr += "Error Description: " + e->m_strDescription;

AfxMessageBox(CStrErr);

}

}

Page 649 GetUniqueName Method
The following sample code replaces the example in the book.

cmdUniqueFile_Click()

Dim strNewfile As String

Dim strPath As String

'Pass the directory, template, and file extension for
'the new file
'strPath = "c:\Images" example of local image path

strPath = "Image://Groucho\demo:"

strNewfile = ImgAdmin1.GetUniqueName(strPath, "test",
"tif")

Developer’s Guide Update

9

With ImgEdit1

.Image = strPath & "\" & strNewfile

.DisplayBlankImage .Width, .Height

.SaveAs (strPath & "\" & strNewfile)

End With

End Sub

Pages 651, 219, 220 Use of Delimiters
In some cases, using a semicolon (;) as a delimiter does not work
correctly. If you have encountered this problem, substitute a space
for the semicolon. Refer to the following places in the book
where the semicolon is used:

■ page 651, under the See Also heading:
“findfolders cabinet=cabinetname;drawer=drawername”

■ page 219, in the description of the szQueryTerms parameter:
“findfolders cabinet=” & mstrCabinet &”;drawer=” & ...

■ page 220, in the example:
mstrQuery = “findfolders cabinet=” & mstrCabinet &”
;drawer=” & ...

Page 653-654 ImgQuery Method, VB Example
The following sample code replaces the example in the book.

Private Sub cmdQuery_Click()

Dim objResults As Object

Dim varItem As Variant

Dim Msg As String

'Perform the query and put results in objResults.

On Error GoTo ImgQueryErr

ImgAdmin1.ImgQuery("srvrname\test_db:", "finddocs
 keyword = insurance", objResults)

'Write results of the query to a listbox.

For Each varItem In objResults

lb_results.AddItem varItem

Next

Developer’s Guide Update

10

'Release memory and resources.

Set objResults = Nothing

ImgAdmin1.ImgQueryEnd

Exit Sub

ImgQueryErr:

‘Display error message

Msg = "ImgQuery method failed" & vbCRLF & _

"Error Number: " & Err.Number & vbCRLF & _

"Error Description: " & Err.Description

MsgBox Msg, vbExclamation

End Sub

Chapter 9 — Image OCR Control
Page 687 Image Property

To the Remarks section, add the following comment:

“The image defined in this property must be stored in a file, or the
OCR will fail. For example, if you scan an image to display only,
you must save it as a file before you can perform an OCR.”

Chapter 10 — Image Scan Control
Page 744 Zoom Property

In the Data Type section, the value should be “Single” instead of
“Long.”

Page 767 SetPageTypeCompressionOpt Method
In the Returns section, the value should be “Integer” instead of
“None.” Possible Return values are:

Value Description

0 Success

1 Invalid Compression Preference

2 Invalid Image Type

3 Invalid Compression Type

4 Invalid Compression Info

Developer’s Guide Update

11

Page 770 SetScanCapability Method
In the Returns section, the value should be “Long” instead of
“None.” Possible Return values are:

Appendix B— Imaging ActiveX Tips and Tricks
Page 865 The current section, “Catch errors properly when working

with the ShowFileDialog method,” is replaced with the
following section.

Catch errors properly when working with the Active X
Controls

All the OCX controls (Image Admin, Image Edit, Image
Annotation Tool Button, Image OCR, Image Scan and Image
Thumbnail) and COM objects (Image Server Access) throw errors
when a problem occurs. Unless these errors are properly handled,
they will cause your program to quit. As an example, consider the
Image Admin OCX control’s ShowFileDialog method.

Value Description

0 Success

3 Bad capability

4 Invalid array passed in. Possible problems could be:

− must be an array of floats

− must be a one dimensional array

− failed call

− must have a lower limit of 0

− failed call

− must have an upper limit of 4

5 Bad data value

Developer’s Guide Update

12

When invoked, ShowFileDialog displays an Open or Save As
dialog box to end users. When users click Cancel on one of these
dialog boxes, a “Cancel button is pressed” error condition occurs.
Other Image Admin error conditions can also occur as the
procedure containing the ShowFileDialog method continues its
processing.

It is important to understand the difference between catching the
“Cancel button is pressed” error condition and any other Image
Admin (or other Active X control) error condition that may
occur.

In Visual Basic — The following code snippet from the Eastman
Sample application demonstrates the recommended way of
handling ShowFileDialog error conditions, as well as those for all
the Imaging Active X controls and COM objects. To trap any
errors, put an On Error statement such as the one below before
the control code in question. This particular statement says that
the code should resume processing at the statement labeled
OCXError. (Other On Error options are available. See the Visual
Basic help text or any good book on Visual Basic).

'Trap errors that may be thrown by the OCX

On Error GoTo OCXError

'Display open dialog

kdkImgAdmin1.InitDir = "C:\My Documents"

kdkImgAdmin1.Image = ""

'Set this property to False so no error is thrown
‘when Cancel is pressed

'kdkimgadmin1.CancelError = False

Note: While the examples below catch the "Cancel button is
pressed" error condition to illustrate the appropriate
techniques for catching errors, you do not need to catch
this particular error if you do not wish to do so. To prevent
this error from being thrown, see the Image Admin
CancelError property.

Developer’s Guide Update

13

kdkImgAdmin1.ShowFileDialog OpenDlg, Form1.hWnd

'Display image selected from open dialog

kdkImgEdit1.Image = kdkImgAdmin1.Image

kdkImgEdit1.Display

Exit Sub

OCXError:

' If the Cancel button was pressed, or if a different

'error occurred, declare a message box and exit the

'subroutine.

MsgBox "Error: " + Str(Err.Number) + vbCrLf + _

"Description: " + Err.Description + vbCrLf + _

"ImgAdmin error: " + Hex(kdkImgAdmin1.StatusCode), _
vbCritical, "Error"

 Exit Sub

When users click Cancel on the Open or Save As dialog box while
executing the ShowFileDialog method, an error is thrown.
Based on the instructions in the On Error statement, the code
resumes execution at the line labeled OCXError. The Number
property in Visual Basic's Err object contains the literal value for
the "Cancel button is pressed" error condition. The Description
property of the Err object contains a text description of the error.
The StatusCode property is the error code returned by the
Image Admin control. In this case the "Cancel button is pressed"
error, causes a dialog to be displayed followed by an Exit from the
subroutine.

In Visual C++ — Errors thrown by the Active X controls are
handled in similar fashion in Visual C++ using try….catch logic.
The following code snippet shows how this is done. The code to
display the Open dialog box as well as the selected image resides
inside of a try block. If the user presses Cancel in the Open dialog
or commits another trappable error, the code jumps to the catch
block where an error message is displayed.

Developer’s Guide Update

14

// Trap errors that may be thrown by the OCX

try

{

// Display open dialog

m_ImgAdmin.SetInitDir("C:\\My Documents");

m_ImgAdmin.SetImage("");

// Set this property to False so no error is thrown
// when Cancel is pressed.
// m_ImgAdmin.SetCancelError(false);

VARIANT vhWnd;

V_VT(&vhWnd) = VT_I4;

V_I4(&vhWnd) = (long)m_hWnd;

m_ImgAdmin.ShowFileDialog(0, vhWnd);

// Display the image selected from open dialog

m_ImgEdit.SetImage(m_ImgAdmin.GetImage());

m_ImgEdit.Display();

}

catch (COleDispatchException *e)

{

// Handle error in Open dialog or in displaying
// the image

CString CstrErr;// strings to hold error message

CstrErr += "Description: " + e->m_strDescription;

AfxMessageBox(CstrErr);

}

